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Diffusing-wave spectroscopy of nonergodic media
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We introduce an elegant method that allows the application of diffusing-wave spectroscopy~DWS! to
nonergodic, solidlike samples. The method is based on the idea that light transmitted through a sandwich of
two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or
leakage of light take place at the interface between the cells, we establish a so-called ‘‘multiplication rule,’’
which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the
autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we
perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data
are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and
demonstrating the validity of the proposed technique.
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I. INTRODUCTION

Diffusing-wave spectroscopy~DWS! @1–7# is an exten-
sion of ‘‘conventional’’ dynamic light scattering~DLS! @8,9#
to the multiple scattering regime. The basic idea of DWS
to use the autocorrelation functiong2(t)5^I (t)I (t
1t)&T /^I (t)&T

2 of the light intensityI (t) scattered by a tur-
bid medium to study the dynamics of scatterers in the m
dium. Here ^•••&T denotestime averaging that can diffe
from the ensembleaveraging^•••&E . Introduced in 1987
@1#, the technique of DWS has rapidly evolved in rece
years and is currently applied to study various types of tur
media, such as colloidal suspensions@1–6,10#, particle gels
and ceramic green bodies@11–15#, emulsions @16–18#,
foams@19–23#, and granular@24,25# and biological@26–28#
media. It has been demonstrated that DWS can be use
image macroscopic static and dynamic heterogeneities in
bid media @29–35#. In 1995, Mason and Weitz have su
gested that the motion of colloidal particles, characterized
DWS, can be directly related to the viscoelasticity of t
surrounding medium~the corresponding experimental tec
nique is sometimes called ‘‘DWS microrheology’’! @36#.
Much attention has been paid to this approach since it co
provide fast and noninvasive access to viscoelastic prope
of numerous materials, thereby opening a large new field
potential applications for DWS@14,37–39#.

One of the main reasons for the remarkable succes
DWS is the availability of a relatively simple and reliab
theoretical model that describes the experimental data in

*E-mail address: Frank Scheffold@unifr.ch
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practically important cases. The theoretical model of DWS
based on the diffusion approximation@3,4#. It applies equally
well to both statistically homogeneous and heterogene
media~media with inclusions, scatterer flows, etc.!. Absorp-
tion of light, reflection of scattered waves at the sam
boundaries, modulation of the source intensity, as well
various types of scatterer motion~Brownian @3,4# and sub-
brownian @40# motion, laminar@41–43# and turbulent@44#
flows, etc.! can be taken into account within the framewo
of the diffusion model. Recently, the theory of DWS h
been extended to nonlinear random media@45,46#.

An important condition for the applicability of the exis
ing diffusion theory to DWS experiments is theergodicityof
the turbid medium under investigation. Indeed, ensemb
averaged quantities are commonly calculated theoretica
while it is the time averaging that is most easily obtained
experiments. Thus,̂•••&E5^•••&T is required for the ex-
perimental data to be described by the theory. If the lig
scattering sample is nonergodic~say, the sample or som
part of it is solidlike! additional efforts, e.g., translational o
rotational motion of the sample during the measurement,
necessary in order to obtain̂•••&E @29,33–35#. Similar ar-
guments hold for the role of nonergodicity in standard D
experiments@47–53#.

In the present paper we propose an elegant and sim
way of performing diffusing-wave spectroscopy of none
godic media@11,54#. The method is based on the idea th
light transmitted trough a sandwich of two turbid cells can
considered ergodic even if only the second cell is ergod
We show that the resulting transmitted multiple-scattered
tensity is ergodic despite the nonergodicity of random m
dium in the first cell. Consequently, the usual DWS theo
applies to the description of the intensity autocorrelat
©2001 The American Physical Society04-1
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SCHEFFOLD, SKIPETROV, ROMER, AND SCHURTENBERGER PHYSICAL REVIEW E63 061404
function g2(t). Moreover, the double-cell sample can
constructed in a way that the presence of the second, erg
cell does not obscure the light-scattering signal of the n
ergodic medium under investigation. In order to simplify t
interpretation of the experimental data, we introduce a
called ‘‘multiplication rule.’’ Namely, we show that if a sig
nificant attenuation of diffuse waves occurs at the interf
between the cells due to absorption and/or leakage of ligh
transverse directions, the ensemble-averagedfield @55# auto-
correlation functiong1

(2)(L1 ,L2 ,t) of the double-cell setup
equals a product of autocorrelation functionsg1

(1)(L1 ,t) and
g1

(1)(L2 ,t) corresponding to the individual cells~from here
on, we use superscripts 1 and 2 to denote the autocorrela
functions corresponding to single- and double-cell samp
respectively;L1 andL2 are the thicknesses of the cells!. This
allows a full DWS study of the turbid media in the first ce
despite its nonergodicity. Due to its simplicity and high s
tistical accuracy, our method is ideally suited for the study
turbid gels, colloidal glasses, and other nonergodic multip
scattering media@11,12,15,54#. The method also extends th
applicability of the above-mentioned microrheology a
proach @36,37# to an important class of solidlike comple
materials where the motion of colloidal tracer particles
highly constrained.

The paper is organized as follows. In the next section,
provide a brief review of known experiments in the field
DLS by nonergodic media. We describe the methods use
overcome the problem of nonergodicity and discuss the
plicability of similar methods in DWS experiments. In th
second part of the section, we introduce a method to d
with nonergodicity in DWS and reveal the conditions und
which the method can be applied. Section III is devoted
the theoretical model of DWS in a double-layer mediu
Starting from the diffusion equation for the field autocorr
lation function, we obtain an expression for the autocorre
tion function of light transmitted through a sandwich of tw
turbid cells, separated by a nonscattering but perhaps abs
ing wall. Section IV introduces the so-called multiplicatio
rule and reveals the conditions of its applicability. In Sec.
we describe our experimental setup, and Sec. VI is devo
to the discussion of the main results of our experimen
First, we have performed model experiments to test the
lidity of our theoretical model and to ensure that the expe
mental setup is adequately described by the theory. In th
experiments, no attenuation occurs on the passage of
through the wall separating the light-scattering cells and
multiplication rule does not apply. Next, we show how o
method can be applied to an important case of consider
leakage of light at the intercell wall. This situation is th
most interesting for practical applications, since the multip
cation rule implies that the autocorrelation functio
g1

(1)(L1 ,t) corresponding to the first layer can be obtain
simply by dividingg1

(2)(L1 ,L2 ,t) measured for the two-cel
setup by g1

(1)(L2 ,t) measured for the second cell take
alone. In addition, our second sample is highly asymmet
the first layer is of significant optical thickness and has
relatively short correlation decay timet1, while the optical
thickness of the second one is moderate and its correla
06140
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decay timet2@t1. This prevents the light-scattering sign
of the first, nonergodic cell from being obscured by the s
ond cell. In Sec. VII we discuss different aspects of appli
tion and optimization of the two-cell technique in practic
We summarize our main results in Sec. VIII.

II. DYNAMIC LIGHT SCATTERING
BY NONERGODIC MEDIA

In nonergodic random media, the scatterers are locali
near fixed average positions, probing only a small fraction
their possible spatial configurations by thermal motion. A
consequence, the measured time-averaged quantities~such as
the scattered intensity or its autocorrelation function! differ
from the ensemble-averaged ones. Experimentally, one fi
that a series of~time-averaged! measurements on a give
sample yields a set of different results, each being of limi
use for the characterization of the medium~see Fig. 1!.

A. Concepts to deal with nonergodicity
in dynamic light scattering

For diluted, nonergodic samples several methods h
been applied to properly average the data obtained in D
experiments@47–53#. A good comparative review of some o
these methods can be found in Refs.@50# and@51#. The most
direct method of performing ensemble averaging of scatte
light for nonergodic samples is based on the idea of colle
ing light scattered by different parts of the sample, thus p
forming the ‘‘real’’ ensemble averaging@50#. Experimen-
tally, the sample is slowly moved or rotated, while th
autocorrelation function of the scattered intensityg2(t) is
collected. Obviously, this leads to an additional decay
g2(t), which becomes increasingly rapid with increase of t
translation velocity or the rotation frequency@50#. The
rotation/translation method can be extended to concentra
turbid suspensions without any particular difficulties, and
has been actually employed in recent experiments
diffusing-wave imaging@34,35#. It has, however, an impor
tant disadvantage of experimental complexity~translation or
rotation of the sample is required!. Besides, it is not well

FIG. 1. Typical light scattering signal of a nonergodic syste
Repeated~time averaged! measurements ofg2(t)21 lead to non-
reproducible results, each being of limited use for the character
tion of the system. Over the measurement time~typically a few
minutes!, the time and ensemble averages of the fluctuations of
scattered light intensity are not the same.
4-2
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DIFFUSING-WAVE SPECTROSCOPY OF NONERGODIC MEDIA PHYSICAL REVIEW E63 061404
suited for fragile turbid systems~such as gels!, since moving
or rotating the sample can lead to its disturbance or e
breakdown.

Pusey and van Megen@47# have proposed a method o
obtaining the ensemble-averaged intensity autocorrela
function from a combination of static and dynamic expe
ments. The idea is to measure the autocorrelation functio
scattered intensity for a single sample orientation, and
subsequently rotate/translate the sample rapidly in orde
obtain the average intensity for a given scattering angle@47–
49,56#. Recently, an extension of the above method to DW
experiments has been developed@57#.

In general, all these approaches rely on a one-dimensi
motion of the sample, i.e., scanning the speckle patt
which is not very efficient and therefore time consumin
This makes it intrinsically difficult to apply these methods
systems that evolve in time, e.g., gelling systems.

A different method of dealing with nonergodicity in DL
has been proposed in Refs.@52# and@53# ~see also Ref.@58#!.
The authors use a charge-coupled-device~CCD! camera to
record the temporal evolution of many speckle spots sim
taneously, which allows them to perform correctly both tim
and ensemble averages~the latter is the average over a larg
number of speckle spots!. The method appears to be ve
efficient in the small-angle single-scattering regime, while
application to multiple-scattering systems is complicated
a ~generally! insufficient time resolution of available CCD
cameras~in DWS, fast and low-intensity speckle fluctuation
are usually monitored!. However, the method of Refs.@52#
and@53# can be applied to study extremely slow dynamics
turbid systems where the above-mentioned constraints do
apply @59#.

B. Two-cell technique

To overcome the problem of nonergodicity, we prepar
sandwich consisting of two independent glass cells. The
cell contains a solidlike nonergodic medium under stu
while the second cell is filled with an ergodic medium@see
Fig. 2~a!#. By adjusting the concentration of scatterers in t
second cell, the viscosity of the liquid where the scatter
are suspended, and the thickness of the cell, it is possib
shift the ‘‘forced’’ decay of the autocorrelation function du
to the second cell to long correlation timest. Then
g1

(2)(L1 ,L2 ,t) will exhibit a short-time decay due to the mo
tion of scatterers in the first cell, at intermediatet it will
saturate at a plateau because of the nonergodic nature o
medium in the first cell, and finally, at long correlation time
g1

(2)(L1 ,L2 ,t) will decrease to zero due to the motion
scatterers in the second cell. Physically, the slow motion
scatterers in the second cell gently shakes and random
the speckle pattern of the nonergodic medium. In this w
ensemble averaging of light scattered by the first cell is
complished, similarly to the case when the sample is mov
The time scale of this averaging can be well controlled
the scatterer motion inside the second cell and by the th
ness of the cell. The only constraint being a high enou
optical thickness of the second cell, ensuring that the no
godic intensity fluctuations produced by the first cell are
06140
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eraged out upon the transmission through the second
and that no light can pass through the latter without be
scattered. The described setup offers an advantage of
statistical accuracy due to a two-dimensional averag
scheme. Furthermore, no mechanical disturbance is app
to the sample, which is of particular importance when wo
ing with fragile systems.

Let us briefly discuss different aspects of time and e
semble averages in the double-cell geometry. For simplic
we choose the intensity of light~and not its autocorrelation
function! as an object of averaging, but the same argume
apply to the autocorrelation function as well. First, we co
sider the transmission of a plane wave through a layer
totally rigid random medium~thicknessL1, photon transport
mean free pathl 1* ). We find that the ensemble-averaged i
tensity of multiple-scattered light̂I (R,z)&E at depthz and
transverse positionR5$x,y% is independent ofR. Mean-
while, ^I (R,z)&T[I (R,z) is a random function ofR, a ‘‘fin-
gerprint’’ of a given scatterer distribution in the sampl
Consequently,^I (R,z)&EÞ^I (R,z)&T and the considered
light-scattering system is nonergodic.

Let us now add a second turbid layer~thicknessL2, pho-
ton transport mean free pathl 2* ) just after the first one@we
neglect for a moment the thicknessD of a glass wall sepa-
rating the cells, see Fig. 2~a!#. We assume that the scattere
in the second layer are moving, and that all possible spa

FIG. 2. Schematic illustration of the idea of the two-cell tec
nique. ~a! A cell ~thicknessL2) containing an ergodic turbid me
dium is added just after the cell containing the nonergodic med
under investigation~thicknessL1). The cells are separated by
glass wall~thicknessD). The overall thickness of the sample isL
5L11D1L2. ~b! Time-averaged intensity profiles are shown sch
matically for the incident light, the multiple-scattered light at th
intercell interfacez5L1, and for the transmitted light. Between th
cells, the time-averaged intensity exhibits speckles due to the n
ergodic nature of the medium in the first cell. The speckles
washed out upon the transmission through a sufficiently thick s
ond cell.
4-3
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SCHEFFOLD, SKIPETROV, ROMER, AND SCHURTENBERGER PHYSICAL REVIEW E63 061404
configurations of scatterers are explored in course of
motion. The light intensityI (R,z,t) is then time dependent
and the time-averaged intensity of light transmitted throu
the double-layer medium,^I (R,L,t)&T , can be considered a
a result of transmission of the speckle pattern^I (R,L1 ,t)&T ,
being specific for the given configuration of scatterers ins
the first layer through the second layer. Now we assume
the optical thicknesses of both layers are large enoughLn

@ l n* ) so that the diffusion picture of wave transport is va
in both layers. This allows us to estimate the typical spec
size at thez5L1 plane asd;l ~see, e.g., Ref.@60#!, where
the wavelength of lightl is assumed to be roughly the sam
in both layers and much smaller than the scattering length
the layers. At the same time, as long asL2@ l 2* , theaverage
intensity of light transmitted through the second layer is
sensitive to those details of the ‘‘source distribution
I (R,L1 ,t) that are finer thanL2. Consequently, the speckl
patternI (R,L1 ,t) will be completely washed out upon th
transmission through the second layer, and^I (R,L,t)&T will
be insensitive to the exact spatial configuration of scatte
in the first ~rigid! layer, being equal tô I (R,L,t)&E . The
scattering system is then ergodic: the time and ensemble
erages are equivalent. Similar arguments apply in the c
when the first layer is not completely rigid but exhibits som
nonergodic dynamics. The general reason for this is the
lowing. A given speckle spot of typical sized! l 2* in the z
5L1 plane can be considered as a point source of lig
which produces a photon cloud spreading linearly upon
diffusion through the second layer of turbid medium. Hen
the speckle spot atz5L1 gives contributions to the averag
intensity within a region of typical transverse sizeL2 at the
z5L plane. For this reason, the intensity of light at a giv
point R of the z5L plane is formed as a sum of contribu
tions of N;(L2 /d)2@1 speckle spots located atz5L1 @see
Fig. 2~b!#. In this way, the averaging over a large number
independent speckle spots is performed. In some sense,
an averaging is equivalent to that obtained by translation~or
rotation! of a single nonergodic layer. It is worth noting
however, that in order to average over the same numberN of
speckle spots, the sample has to be translated by a distan
orderL2

2/d@L2.

III. THEORY OF DWS IN A DOUBLE-LAYER MEDIUM

Adding a second cell modifies the intensity autocorre
tion function of transmitted light, which now exhibits an a
ditional decay. In order to interpret properly the experimen
data, we need a theoretical model describing the autoco
lation function in a double-layer turbid medium. In this se
tion, we show that such a model can be readily construc
provided that the transport of light is diffusive in both laye

Consider a slab situated between the planesz50, z5L
5L11D1L2, and consisting of two layers of turbid med
~thicknessesL1 and L2) separated by a nonscattering b
perhaps absorbing wall~thicknessD, absorption coefficient
Ma), as depicted in Fig. 2~a!. L1 andL2, are assumed to b
much larger than the photon transport mean free paths in
the layers,l 1* and l 2* , respectively. If the slab is illuminate
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by a plane monochromatic wave, the field correlation fun
tion G1(r ,t)5^E(r ,t)E* (r ,t1t)&E inside each turbid layer
can be found as a solution of the diffusion equation@29,31#

@¹22a2~t!#G1~r ,t!52
3S~r !

l *
, ~1!

wherea2(t) describes ‘‘attenuation’’ of correlation due t
scatterer motion, andS(r )5s0d(z2z0) is the source term
(z0' l 1* ). The explicit form of the ‘‘attenuation’’ coefficient
a2(t) in Eq. ~1! depends on the type of scatterer moti
~e.g., Brownian motion, flow, etc.!. One can show thata2(t)
is determined by the absorption lengthl a and the mean
square scatterer displacement^Dr (t)2&E @5,31,61#:

a2~t!5
3

l al *
1

k2

l * 2
^Dr ~t!2&E , ~2!

wherek52p/l is the wave number of light in the medium
For Brownian motion@3,4#, ^Dr (t)2&E5^Dr (t)2&T56DBt
and a2(t)53/(l al * )16t/(t0l * 2) with t05(k2DB)21,
while for a directed flow one finds@41–43# ^Dr (t)2&E,T
}t2, and a2(t)}t2. In the case of a gel, which is an ex
ample of nonergodic medium considered in this paper,
assume that the particles undergo a sort of arrested subd
sive motion@11,57,62#,

^Dr ~t!2&E,T5d2H 12expF2S t

tc
D pG J , ~3!

whered denotes the maximum r.m.s. particle displaceme
tc is a characteristic time required for this displacement
occur, andp is a free parameter. We expect@11# p.0.7
60.1. Equations~2! and ~3! give

a2~t!5
3

l al *
1

~kd!2

l * 2 H 12expF2S t

tc
D pG J . ~4!

The time autocorrelation function for a sample consist
of two turbid layers separated by a nonscattering wall can
found by solving Eq.~1! inside each layer, and then applyin
the boundary conditions at the surfaces of the mediumz
50 andz5L) and at the interfaces between the turbid lay
and the nonscattering wall. Boundary conditions atz50 and
z5L are of a well-known form@63–66#,

$G1~r ,t!2z1@ez•“G1~r ,t!#%uz5050, ~5!

$G1~r ,t!1z2@ez•“G1~r ,t!#%uz5L50, ~6!

whereez is a unit vector parallel to thez axis, zn5(2/3)l n* ,
and the refractive index mismatch between the scattering
transparent media is neglected. In general, a rigorous th
would require using the extrapolation lengthszn calculated
with account for the refractive index mismatch at the sam
surfaces@63–66#, or deduced from the angular distribution o
diffusely transmitted light@67#. For our purposes, however,
is sufficient to know thatzn;l n* , since the actual values o
4-4
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DIFFUSING-WAVE SPECTROSCOPY OF NONERGODIC MEDIA PHYSICAL REVIEW E63 061404
zn are of no importance in the limit ofanl n* !1 and l n* /Ln

!1 that we apply in the following.
Boundary conditions at the interfacesz5L1 and z5L1

1D between turbid and nonscattering media are found
applying the condition of flux conservation, as discussed
Ripoll et. al. @68#. Neglecting the refractive index mismatc
between the turbid and nonscattering media, we find@69#

@G1~r ,t!1z1$ez•“G1~r ,t!%#uz5L1

5 f ~r !@G1~r ,t!1z2$ez•“G1~r ,t!%#uz5L11D , ~7!

@G1~r ,t!2z2$ez•“G1~r ,t!%#uz5L11D

5 f ~r !@G1~r ,t!2z1$ez•“G1~r ,t!%#uz5L1
, ~8!

with f (r ) describing the losses of energy at the interla
wall due to absorption and/or leakage of light in transve
directions@0< f (r )<1 and f (r )[1 in the absence of both
absorption and leakage#. For an infinitely wide slab~no leak-
age! we have@69#

f 5exp~2MaD!~12MaD!1~MaD!2G~0,MaD!, ~9!

whereG(•••) is the incomplete gamma function. For reali
tic samples of finite width, leakage of light in transver
directions may be considerable. In the absence of absorp
(Ma50), we find for a cylindrical sample of radiusR@ l n*
after averaging over the sample cross-section,

f 511
1

2 S D

RD 2

2
1

2

D

R F41S D

RD 2G1/2

. ~10!

Averaging over the sample cross-section makesf indepen-
dent of r , which largely simplifies the further analysis with
out affecting the final result qualitatively.

In what follows, we assume thatf (r ) in Eqs.~7! and~8! is
given either by Eq.~9! or by Eq.~10!, being independent o
r in both cases. The case when both absorption and lea
are present can also be analyzed without any particular
ficulties, but this leads to cumbersome formulas without
troducing any new qualitative features. Both Eqs.~9! and
~10! exhibit a monotonic decrease from 1 (MaD50 or
D/R50) to 0 (MaD@1 or D/R@1). If f 51 ~no absorption,
no leakage!, Eqs. ~7! and ~8! reduce to the well-known
boundary conditions between two turbid media in a dir
contact@29,31,32#. If f 50 ~strong absorption and/or leak
age!, Eqs.~7! and~8! decouple and the problem is reduced
two single-layer problems.

Equations~1! and ~5!–~8! enables us to calculate the a
tocorrelation function of light transmitted through th
double-layer system,G1(L,t)/G1(L,0), which in the ab-
sence of absorption (l a→`) inside the turbid layers reads
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(2)~L1 ,L2 ,t!5

a1L1

sinh~a1L1!

a2L2

sinh~a2L2!

3~12 f 212z1 /L112z2 /L2!

3F12 f 21
2a1z1

tanh~a1L1!
1

2a2z2

tanh~a2L2!G
21

,

~11!

where we assumedanl n* !1 andl n* /Ln!1.
In our experiments, the time-averaged autocorrelat

function of the scatteredintensity g2(r ,t)5^I (r ,t)I (r ,t
1t)&T /^I (r ,t)&T

2 is measured. As the double-layer system
shown to be ergodic~see Sec. II!, g2 is related tog1 by the
Siegert relation@8#

g2~r ,t!511bug1~r ,t!u2, ~12!

where b.1 is a constant determined by the experimen
setup@8,9#. Let us assume that the first layer is filled with
gel, while the second one contains a suspension of Brown
particles with a correlation decay timet25t0( l 2* /L2)2. We
also assume that the characteristic correlation decay tim
the first layert1 is much smaller thant2. Then, it can be
shown from Eqs.~11! and ~12! that when the rms particle
displacement̂ Dr (t)2&1/2 approachesd for t@t1 @Eq. ~3!#,
the autocorrelation functiong1

(2)(L1 ,L2 ,t) reaches a plateau
for t1!t!t2. The plateau height can be found from E
~11!. As t approachest2 , g1

(2)(L1 ,L2 ,t) continues to de-
crease.

IV. MULTIPLICATION RULE

The autocorrelation function of light transmitted throug
a single layer of turbid medium can be found@31# from Eq.
~1! with boundary conditions~5! and ~6!, and since fora l *
!1 andL@ l * the solution reads

g1
(1)~L,t!5

aL

sinh~aL !
, ~13!

we can rewrite Eq.~11! as

g1
(2)~L1 ,L2 ,t!5g1

(1)~L1 ,t!g1
(1)~L2 ,t!F, ~14!

where

F5~12 f 212z1 /L112z2 /L2!

3F12 f 21
2a1z1

tanh~a1L1!
1

2a2z2

tanh~a2L2!G
21

. ~15!

Hence, the autocorrelation function of light transmitt
through the double-layer sample is given by a product
autocorrelation functions of individual layers times som
functionF that describes the coupling between the layers.
adjusting the parameters of the experimental setup,F.1 can
be achieved, and then the followingmultiplication rulewill
hold:
4-5
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g1
(2)~L1 ,L2 ,t!.g1

(1)~L1 ,t!g1
(1)~L2 ,t!. ~16!

To reveal the conditions of validity of the multiplication ru
~16!, we consider separately the cases of low (f .1) and
considerable (f ,1) losses of light at the interlayer interfac

If f .1, Eq. ~15! becomes

F.FL1

l 1*
1

L2

l 2*
GFL1

l 1*

a2L2

tanh~a2L2!
1

L2

l 2*

a1L1

tanh~a1L1!G21

,

~17!

which reduces to unity only ifa1L1!1 and a2L2!1, or
L1 / l 1* @L2 / l 2* and a2L2!1, or L1 / l 1* !L2 / l 2* and a1L1

!1. In other words, for the multiplication rule~16! to hold,
the optical thickness of, e.g., the first layer should be m
greater than that of the second one, whileg1

(1)(L2 ,t).1 for
the latter.

In the presence of losses at the interlayer interface,f ,1
and Eq. ~15! yields F.1 if Ln / l n* @1/(12 f 2) and
anl n* /tanh(anLn)!12f2. To give an example, suppose th
50% of wave energy is lost on crossing the interlayer int
face once (f 50.5). This gives Ln / l n* @4/3 and
anl n* /tanh(anLn)!3/4. The latter conditions are common
satisfied in typical DWS experiments, making the applicat
of the multiplication rule rather practical.

It is worthwhile to note that there exists a different, le
rigorous but more transparent way of establishing the mu
plication rule. Adopting the path-integral picture of ligh
propagation through the double-layer medium@2–4#, we can
write the field autocorrelation function of transmitted light

g1
(2)~L1 ,L2 ,t!5E

0

`

ds1E
0

`

ds2P2~s1 ,s2!

3expF2
1

2
^Dw2~t!&s1

2
1

2
^Dw2~t!&s2G ,

~18!

whereP2(s1 ,s2) is the relative weight of paths consisting
segments of overall lengthss1 ands2 inside the first and the
second layers, respectively. The variances of phase di
enceŝ Dw2(t)&sn

describe the dephasing of light inside th
layers. For a single layer of thicknessL one has@2–4#

g1
(1)~L,t!5E

0

`

dsP1~s!expF2
1

2
^Dw2~t!&sG . ~19!

Obviously, if the variabless1 and s2 can be considered in
dependent,P2(s1 ,s2)5P1(s1)P1(s2), and Eq.~18! reduces
to a product of two terms each being of the form of Eq.~19!.
This transparent physical picture underlying the multiplic
tion rule is particularly helpful if one seeks to understand
role of losses~absorption and/or leakage of light! at the in-
terlayer interface. Increasing the losses makes the pa
lengths of light pathss1 ands2 in the layers more and mor
independent, since the losses reduce the probability fo
typical path to cross the interface more than once. Con
quently, most of the paths will consist of two independe
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segments, one inside the first layer~lengths1) and the other
one inside the second layer (s2). P2(s1 ,s2) will then reduce
to a productP1(s1)P1(s2), exactly as required for the mul
tiplication rule to hold. Note that the Siegert relation~12!
implies that the multiplication rule applies tog2(t)21 as
well.

V. EXPERIMENTAL SETUP

Our experimental setup consists of a frequency-doub
Nd:YV04 ~neodymium:yttrium vanadate! laser ~‘‘Verdi’’
from Coherent, wavelengthl05532 nm) with a beam width
of roughly 1 mm. Only minor differences are found upo
expanding the beam to 7 mm in width~see also Ref.@7#!.
The laser radiation is directed at the surface of the sam
consisting of two cells and the multiple-scattered, transm
ted light is collected using a single-mode optical fiber. T
intensity of collected light is analyzed by a digital correlat
~see Fig. 3!. Apart from the complex structure of the samp
the described experimental setup represents a classica
for diffusing-wave spectroscopy experiments in transmiss
geometry@2–5#. We pay special attention to the preparati
of the sample, which is a key feature of our experiments. T
first cell ~thicknessL1) is filled by a colloidal gel, prepared
from a destabilized solution of polystyrene spheres~diameter
170 nm! at a volume fraction up to 20% in a buoyanc
matching mixture of water and heavy water@11,70,71#. In
our experiments, the gel serves as a model nonergodic
dium where the average mean square displacement of
constituent particles is reasonably well described by
model of arrested subdiffusive motion@see Eq.~3!#. In gen-
eral, gel systems undergo a complicated temporal evolu
~see, e.g., Refs.@11,13–15,50,58,62#!, which is not a subject
of the present paper. For our measurements, we wait till a
the sol-gel transition, till the height of the plateau ofg2(t)
21 is of the order of 0.5, and the gel properties rem
constant over the measurement time of about 10–30 min.
note that experimentallyg2(t)21 does not exhibit a perfec
plateau but rather a long stretching. This indicates a sec
long-time decay of the autocorrelation function, not includ
in our simple theoretical model@Eq. ~3!#. The characteristic
time scale of this decay extends to minutes or hours@11,58#,
and hence is beyond the time window of our experiment

FIG. 3. Experimental setup. A laser beam (l05532 nm) is in-
cident on a sandwich of two turbid layers. The light transmitt
through the sandwich is detected with a monomode fiber, an
subsequently analyzed with a photomultiplier~PM!–digital cor-
relator unit.
4-6
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Two different realizations of the two-cell sample we
used in the experiments reported below~samplesA andB for
brevity!. While sampleA is a model sample constructed
test the validity of our approach, sample B is optimized
facilitate its experimental application~the multiplication rule
holds for this sample!.

Sample A. The sample consists of three disc-shaped
croscope cover plates~radius R57 mm, thicknessD
50.15 mm) and two ring-shaped teflon spacers. The
cell contains a colloidal gel~volume fractionF57%, pho-
ton transport mean free pathl 1* 553 mm). The second cell is
filled with a suspension of TiO2 powder ~Aldrich, particle
diameter,5 mm) dispersed in pure glycerol~refractive in-
dex n51.47). The transport mean free path for this susp
sion is l 2* 541 mm. The single scattering correlation tim
corresponding to the suspension in the second cell ist0
52361 s, as determined by standard DWS measurem
in backscattering geometry@3#. The thicknessesL1 andL2 of
the layers were determined from DWS measurements
transmission geometry by filling them with a suspension
known l * and fitting the resulting intensity autocorrelatio
functions with Eq. ~13!. We find L151.75 mm andL2
51.9 mm. The optical thicknesses of both layers are com
rable and high enough (L1 / l 1* .33;L2 / l 2* .46@1), and
therefore we call this sample ‘‘symmetric.’’ A typical photo
path lengths in the sample iss;L2/ l * '43102 mm ~with
L.L11L2'4 mm, l * 5 l 1* ' l 2* '40 mm), which is two or-
ders of magnitude larger than the sample thickness. He
the scattering of light in our sample is essentially multip
and a typical photon path is expected to cross the bu
interlayer interface many times. Estimation@72# of the at-
tenuation factorf gives f .0.98.1, and hence the multipli-
cation rule will only hold for the sampleA in a trivial situa-
tion of a1L1!1 anda2L2!1, asL1 / l 1* ;L2 / l 2* .

Sample B. The sample consists of two equally thick ligh
scattering cells~Hellma, L15L251 mm). The thickness o
the glass wall between the turbid media inside the cells
D.2 mm. Such a thick wall leads to a significant phot
leakage in transverse directions, and we put an apertur
radiusR52.5 mm in between the two cells to prevent t
photons leaked out of the cell from reaching the detec
This leads to some additional decrease of the total trans
ted intensity, while ensures the multiplication rule as d
cussed in Sec. IV. Indeed, forf .0.46 estimated theoreticall
@72# the multiplication rule should hold wheneverLn / l n*
@1/(12 f 2);1 andanl n* !12 f 2;1, which coincides with
the conditions of validity of Eq.~11!. We expect the actua
value off to be even smaller due to~total! reflections of light
at the interface that are not included in our present theore
model. Even though the conditions of validity of the mul
plication rule are satisfied, to apply it in a real experime
@i.e., to find g2

(1)(L1 ,t)21 as a ratio ofg2
(2)(L1 ,L2 ,t)21

and g2
(1)(L2 ,t)21# we need bothg2

(2)(L1 ,L2 ,t)21 and
g2

(1)(L2 ,t)21 to be essentially different from 0, as othe
wise experimental errors in determination of the above au
correlation functions can be significant, making the appli
tion of the multiplication rule impractical. To overcome th
problem, we choose the second light-scattering cell to be
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much smaller optical thickness than the first one, while
motion of scatterers is made slow inside it. Namely, the fi
cell is filled with a very turbid gel~volume fraction F
520%, l 1* 519 mm), while the second one contains a mo
erately turbid suspension of colloidal polystyrene disper
in a water-glycerol mixture (l 2* 5300–500mm). The de-
crease of the measured autocorrelation function due to
motion of scatterers in the second ergodic cell is there
shifted to long timest;t25t0( l 2* /L2)2 and does not ob-
scure the light-scattering signal of the first, nonergodic c
Hence, the multiplication rule can be efficiently applied f
t&t2, while for t@t2 the measured autocorrelation functio
will decrease to 0 due to the motion of scatterers in
second cell. For the sample B,L1 / l 1* '50@L2 / l 2* '2 –3,
and therefore we call this sample ‘‘asymmetric.’’

VI. RESULTS AND DISCUSSION

In order to demonstrate the efficiency of the method p
posed and theoretically justified in Secs. II–III, and to sh
the feasibility of diffusing-wave spectroscopy in nonergod
media, we have carried out several model experiments u
samplesA ~symmetric! and B ~asymmetric!.

A. Symmetric sample

Open circles in Fig. 4~a! show the intensity autocorrela
tion functiong2

(2)(L1 ,L2 ,t)21 of light transmitted through
the symmetric sampleA. The solid line going through the
open circles of Fig. 4~a! is obtained by fitting the experimen
tal data with Eq.~11! assumingf 51 ~no leakage of light at
the wall separating the cells!. The fitting parameters are th
gel parametersd52.24 nm, tc525 ms, p50.6 @see Eq.
~3!#, while the parameters of the medium in the second c
as well as the cell thicknessesL1 and L2 were determined
independently. We note that the two sets of parameters
only weakly correlated in the fit. Theory and experimen
data are found in excellent agreement.

As shown in Fig. 4~a!, the autocorrelation function of the
two-cell setupg2

(2)(L1 ,L2 ,t)21 exhibits two characteristic
decay times. The fast decay is due to the gel in the first la
while the slow decay corresponds to the dynamics in
second layer. This is illustrated in Fig. 4~b!, where we de-
composeg2

(2)(L1 ,L2 ,t)21 in two contributions due to the
dynamics in the first and second layers, respectively. T
contributions of the first~dash-dotted line! and second~dot-
ted line! layers are obtained by assuming the second or
first layer to be rigid@Eq. ~11! with f 51 anda2[0 or a1
[0, respectively#. The contribution of the second layer
renormalized so that its value att50 is equal to the contri-
bution of the first layer att→`. The figure suggests that
simple interpretation of the correlation function resultin
from the two-cell setup in terms of contributions of ind
vidual layers can be given if the decay times due to differ
layers are well separated.

The dotted line in Fig. 4~a! shows the contribution of the
second layer tog2

(2)(L1 ,L2 ,t)21 @the same as in Fig. 4~b!
but renormalized to 1#. Due to the presence of the first laye
although assumed to be rigid, the decay of the autocorr
4-7
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SCHEFFOLD, SKIPETROV, ROMER, AND SCHURTENBERGER PHYSICAL REVIEW E63 061404
tion function becomes significantly faster as compared to
second layer taken alone@full squares in Fig. 4~a!#. This
stems from the fact that the typical lengths of photon path
the second layer are increased due to the presence of the
layer, which acts as an effective ‘‘diffuse mirror,’’ increasin
the probability for a light path to get back to the second la
instead of being diffusely reflected from the sample.

The measurements performed on the symmetric sampA
allows us to conclude that the multiple scattering of light
a two-cell sample is correctly described by the theory dev
oped in Sec. III. At the same time, the results of this subs
tion serve as a test of our method, allowing diffusing-wa
spectroscopy to be applied to nonergodic random media
deed, the parameters of the~nonergodic! gel (d, tc and p)
can be obtained from the fit to the experimental data~see
Fig. 4!, provided that the parameters of the medium in
second cell as well as the thicknesses of both cells are m
sured independently.

B. Asymmetric sample

Although the results of the previous subsection seem to
sufficiently convincing to justify our method of performin
DWS in nonergodic media, we will now show that the inte
pretation of experimental data can be further simplified

FIG. 4. ~a! Intensity autocorrelation function for transmissio
through the symmetric two-cell sampleA ~open circles! and through
the isolated second cell~full squares!. Theoretical fits@Eq. ~11! with
f 51 and Eq.~13!# are shown by solid lines. The dotted line show
the theoretical correlation function of the two-cell sample with t
first layer assumed to be rigid (tc→`). ~b! Different contributions
to the intensity autocorrelation function are shown. The solid line
the fit to the two-cell data of the panel~a!. To obtain the dashed
dotted line, we keep the second layer rigid (t0→`), while all other
parameters are unchanged. The dotted line is that of the pane~a!
multiplied by the plateau value 0.422.
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introducing leakage~or absorption! of light at the interface
between the layers in combination with a proper choice
parameters of the second layer. An optimal choice of
parameters corresponds to our asymmetric sampleB ~see
Sec. V!. For this sample, the optical thickness of the seco
layer is much smaller than that of the first one and the le
age of light at the interlayer wall is considerable. This e
sures the validity of the multiplication rule formulated
Sec. IV as confirmed by the experimental results presen
below. Figures 5~a! and 5~b! show the intensity autocorrela
tion functions g2

(2)(L1 ,L2 ,t)21 obtained for the two-cell
setup ~open circles!. The results for two different secon
cells are displayed. Full squares showg2

(1)(L2 ,t)21 ob-
tained for the isolated second cells, just as in Fig. 4. T
corresponding single scattering correlation timet0

s

FIG. 5. Multiplication rule.~a! Intensity autocorrelation function
measured in transmission through the asymmetric two-cell sam
B ~open circles!. Full squares show the autocorrelation functio
measured for the isolated second cell@decay timet25t0( l 2* /L2)2#.
~b! Same as~a! but for a different medium inside the second ce
~higher glycerol content of the suspending liquid leading to a
duced particle diffusion coefficient and a larger value oft2). ~c!
The ratios of the autocorrelation functions are shown for the dat
panels~a! ~open circles! and~b! ~full squares!. The results are iden-
tical for t,5t2 @with t2 of panel ~a!#, and yield the ensemble
averaged intensity autocorrelation functiong2

(1)(L1 ,t)21 corre-
sponding to the nonergodic first cell taken alone. Inset: Rela
difference D(t)5$@g2

(a)(t)21#2@g2
(b)(t)21#%/@g2

(a)(t)21# be-
tween the two correlation functions of the main plot.
4-8
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DIFFUSING-WAVE SPECTROSCOPY OF NONERGODIC MEDIA PHYSICAL REVIEW E63 061404
5(k2DB)21 of the particles in the second cell has been var
by changing the glycerol content in the suspending liqu
which affects the viscosity of the liquid and, consequen
the particle diffusion coefficientDB .

According to the multiplication rule@Eq. ~16!#, the ratio
@g2

(2)(L1 ,L2 ,t)21#/@g2
(1)(L2 ,t)21# is expected to be equa

to g2
(1)(L1 ,t)21, i.e. the autocorrelation function corre

sponding to the~first! nonergodic light-scattering cell. To
check this prediction, we have calculated corresponding
tios for the curves of Figs. 5~a! and 5~b!. The results are
presented in Fig. 5~c! @full squares correspond to the data
Fig. 5~a!, while open circles correspond to the data of F
5~b!#. The two curves are indistinguishable, supporting
validity of the multiplication rule. Experimentally, we fin
that for t,5t2 @with t25t0( l 2* /L2)2# the deviations from
the multiplication rule are negligible. The perfect agreem
of the results obtained for two different media in the seco
cell confirms the validity of our method.

As an additional check of the multiplication rule, we ha
performed measurements of the intensity autocorrela
functiong2

(2)(L1 ,L2 ,t)21 with the first layer of the double
layer sample being totally rigid~white paper was used t
model rigid but turbid random medium!. The results are pre
sented in Fig. 6 by open circles forg2

(2)(L1 ,L2 ,t)21 and
full squares forg2

(1)(L2 ,t)21 ~the latter is measured for th
isolated second layer!. Full circles are obtained by calcula
ing the ratio @g2

(2)(L1 ,L2 ,t)21#/@g2
(1)(L2 ,t)21#. As ex-

pected, the ratio is 1 over a sufficiently extended time ra
~the ratio 1 corresponds to no scatterer motion in the pap!.

VII. HOW TO APPLY THE TWO-CELL TECHNIQUE

One of the major advantages of the two-cell technique
its simplicity. Nevertheless, we would like to point out som
pitfalls when designing a two-cell experiment. First, it

FIG. 6. Intensity autocorrelation function for a two-cell samp
with a rigid first layer~the colloidal gel in the first layer was re
placed by a white paper that mimics a rigid turbid medium! ~open
circles!. Full squares show the autocorrelation function correspo
ing to the isolated second layer. The ratio of the two autocorrela
functions ~full circles! is 1 to a good accuracy fort,t2

5t0( l 2* /L2)2, corresponding to the absence of scatterer motion
the first layer.
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worthwhile to mention the problem of low transmitted lig
intensity. Building a sandwich with regular glass cuvett
can result in a sample of significant overall thickness. Lig
incident on the setup spreads out diffusely that leads to r
tively low intensity of light reaching the transmission sid
The problem becomes even more severe if absorption an
leakage of light are introduced at the intercell wall to sim
plify the interpretation of experimental data by using t
multiplication rule. Second, due to reflections and additio
leakage of diffuse light at the interface glass walls, some
the light scattered out of the cell can reach the detector w
out passing through the whole sample. To avoid this pr
lem, we recommend putting an aperture~e.g., a black plastic
foil with a centered hole of typically 5 mm in diamete!
between the cells to suppress photons scattered snak
along the cell walls. Ideally, the double-cell sandwich wou
have only one moderately absorbing thin interface wall w
a built-in circular aperture forcing all transmitted light t
pass through the whole sample. We also note that the se
cell should preferably consist of scatterers with a parti
size larger than the laser wavelength. In this case, the tr
port mean free pathl 2* is much larger than the scatterin
mean free path, hence for the same optical densityL2/ l 2* , the
amount of light passing the second layer without being sc
tered at all is significantly reduced@5#.

VIII. SUMMARY AND OUTLOOK

In the present paper we propose and test experimenta
new method for the application of diffusing-wave spectro
copy to nonergodic turbid media. We show that light tran
mitted through a sandwich of two turbid samples can
considered ergodic even if only the second sample is
godic. The autocorrelation function of the transmitted inte
sity can be quantitatively described by the diffusion theo
This allows direct application of diffusing-wave spectro
copy for the characterization of nonergodic media witho
any additional efforts usually required to achieve ensem
averaging~i.e., without translation or rotation of the samp
in course of the correlation function measureme
@29,34,35,50#!. Proper averaging of the light-scattering si
nal is ensured by adding a second, ergodic light-scatte
cell with unprecedented accuracy. In order to simplify t
analysis of the experimental data, the parameters of
double-cell sample can be optimized. Namely, moderate
sorption and/or leakage of light should be introduced at
interface between the light-scattering cells, and the opt
thickness of the second, ergodic cell should be reduced
below the optical thickness of the cell containing the non
godic medium, while the dynamics of scatterers in the s
ond cell should be chosen slow. Under these conditions
have shown that thefield autocorrelation function of light
transmitted through the double-layer sample can be wri
as a product of autocorrelation functions corresponding
the individual layers,g1

(2)(L1,L2 ,t)5g1
(1)(L1 ,t)g1

(1)(L2 ,t).
Consequently, it is sufficient to measure theintensityauto-
correlation functions @55# of the two-cell setup
g2

(2)(L1 ,L2 ,t) and of the second, ergodic layerg2
(1)(L2 ,t),

in order to obtain the properly averaged intensity autoco

-
n

n
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lation function of the nonergodic layerg2
(1)(L1 ,t)21

5@g2
(2)(L1 ,L2 ,t)21#/@g2

(1)(L2 ,t)21#. Henceforth appli-
cation of diffusing-wave spectroscopy for the characteri
tion of nonergodic media becomes straightforward. O
method is particularly suited for the study of time evolvin
systems, e.g., aggregating and gelling particle suspens
~see also Refs.@11# and@15#!, since the data acquisition tim
can easily be adjusted from a few seconds to several ho
r,
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Other promising applications include DWS microrheolo
that has previously been limited to time and length sca
where the motion of tracer particles is not significantly co
strained@36,37#. We expect the two-cell technique to exten
the measurement range of this method and to provide ac
to solidlike materials.

We thank Veronique Trappe for useful comments and d
cussions.
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